Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of different dispersion models for single layer optical thin film index determination

Identifieur interne : 003296 ( Main/Repository ); précédent : 003295; suivant : 003297

Comparison of different dispersion models for single layer optical thin film index determination

Auteurs : RBID : Pascal:12-0103725

Descripteurs français

English descriptors

Abstract

We here determine the optical properties of different single-layer thin films containing Ta2O5, Si, Indium Tin Oxide and Au in the ultraviolet-visible and near infrared ranges. More specifically, we deduce the complex refractive index and thickness from the reflectance and transmittance measured using a spectrophotometer at normal incidence. One major difficulty is to find an appropriate selection of dispersion laws for various types of material (dielectric, semiconductors, and metals). For this purpose, a number of models have been investigated from a theoretical point of view in consideration of the Kramers-Kronig relation. These include the Forouhi-Bloomer model, combined with the modified Drude, Tauc-Lorentz and multiple-oscillator Tauc-Lorentz models. A global optimization procedure had to be employed because of the large number of parameters (from 3 to 15) required to describe the optical dispersion laws. The calculated reflectance and transmittance are in good agreement with experimental data and the complex refractive index is consistent with our knowledge and that already reported.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0103725

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of different dispersion models for single layer optical thin film index determination</title>
<author>
<name>LIHONG GAO</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute Fresnel, UMR 6133 CNRS, Campus de St Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lemarchand, Fabien" uniqKey="Lemarchand F">Fabien Lemarchand</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute Fresnel, UMR 6133 CNRS, Campus de St Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lequime, Michel" uniqKey="Lequime M">Michel Lequime</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute Fresnel, UMR 6133 CNRS, Campus de St Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0103725</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0103725 INIST</idno>
<idno type="RBID">Pascal:12-0103725</idno>
<idno type="wicri:Area/Main/Corpus">002148</idno>
<idno type="wicri:Area/Main/Repository">003296</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dielectric materials</term>
<term>Dispersions</term>
<term>Experimental data</term>
<term>Gold</term>
<term>Indium oxide</term>
<term>Lamellar structure</term>
<term>Near infrared radiation</term>
<term>Optical properties</term>
<term>Optimization</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Refractive index</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Tantalum oxide</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Transmittance</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dispersion</term>
<term>Structure lamellaire</term>
<term>Propriété optique</term>
<term>Rayonnement IR proche</term>
<term>Indice réfraction</term>
<term>Facteur réflexion</term>
<term>Spectre réflexion</term>
<term>Facteur transmission</term>
<term>Matériau diélectrique</term>
<term>Diélectrique</term>
<term>Semiconducteur</term>
<term>Optimisation</term>
<term>Donnée expérimentale</term>
<term>Couche mince</term>
<term>Oxyde de tantale</term>
<term>Silicium</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Or</term>
<term>Ta2O5</term>
<term>Si</term>
<term>7866</term>
<term>7784</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We here determine the optical properties of different single-layer thin films containing Ta
<sub>2</sub>
O
<sub>5</sub>
, Si, Indium Tin Oxide and Au in the ultraviolet-visible and near infrared ranges. More specifically, we deduce the complex refractive index and thickness from the reflectance and transmittance measured using a spectrophotometer at normal incidence. One major difficulty is to find an appropriate selection of dispersion laws for various types of material (dielectric, semiconductors, and metals). For this purpose, a number of models have been investigated from a theoretical point of view in consideration of the Kramers-Kronig relation. These include the Forouhi-Bloomer model, combined with the modified Drude, Tauc-Lorentz and multiple-oscillator Tauc-Lorentz models. A global optimization procedure had to be employed because of the large number of parameters (from 3 to 15) required to describe the optical dispersion laws. The calculated reflectance and transmittance are in good agreement with experimental data and the complex refractive index is consistent with our knowledge and that already reported.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>520</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of different dispersion models for single layer optical thin film index determination</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LIHONG GAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEMARCHAND (Fabien)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEQUIME (Michel)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute Fresnel, UMR 6133 CNRS, Campus de St Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>501-509</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000502802550830</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>54 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0103725</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We here determine the optical properties of different single-layer thin films containing Ta
<sub>2</sub>
O
<sub>5</sub>
, Si, Indium Tin Oxide and Au in the ultraviolet-visible and near infrared ranges. More specifically, we deduce the complex refractive index and thickness from the reflectance and transmittance measured using a spectrophotometer at normal incidence. One major difficulty is to find an appropriate selection of dispersion laws for various types of material (dielectric, semiconductors, and metals). For this purpose, a number of models have been investigated from a theoretical point of view in consideration of the Kramers-Kronig relation. These include the Forouhi-Bloomer model, combined with the modified Drude, Tauc-Lorentz and multiple-oscillator Tauc-Lorentz models. A global optimization procedure had to be employed because of the large number of parameters (from 3 to 15) required to describe the optical dispersion laws. The calculated reflectance and transmittance are in good agreement with experimental data and the complex refractive index is consistent with our knowledge and that already reported.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G84</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dispersion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dispersions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Matériau diélectrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Dielectric materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diélectrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dielectric materials</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dieléctrico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Donnée expérimentale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Experimental data</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de tantale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Tantalum oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tantalio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Ta2O5</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7784</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003296 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003296 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0103725
   |texte=   Comparison of different dispersion models for single layer optical thin film index determination
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024